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Interfacial Growth in Driven Ginzburg-Landau Models: 
Short and Long-Time Dynamics 
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Interfacial growth in driven systems is studied from the initial stage to the long- 
time regime. Numerical integrations of a Ginzburg-Landau type equation with 
a new flux term introduced by an external field are presented. The interfacial 
instabilities are induced by the external field. From the numerical results, we 
obtain the dispersion relation for the initial growth. During the intermediate 
temporal regime, fingers of a characteristic triangular shape could grow. 
Depending on the boundary conditions, the final state corresponds to strips, 
multifinger states, or a one-finger state. The results for the initial growth are 
interpreted by means of surface-driven and Mullins-Sekerka instabilities. The 
shape of the one-finger state is explained in terms of the characteristic length 
introduced by the external field. 

KEY WORDS: Nonequilibrium steady state; interfacial instabilities; driven 
diffusive systems; Ginzburg-Landau model; external field. 

1. INTRODUCTION 

The  s tudy  of  s p a t i o t e m p o r a l  pa t t e rns  induced  by n o n e q u i l i b r i u m  interfacial  

instabi l i t ies  cons t i tu tes  an  in teres t ing  field of  research,  t~-5~ Re levan t  

progress  has  been  m a d e  in the cha rac t e r i za t i on  and  select ion of  s teady-s ta te  
so lu t ions  t~-4~ and  increas ing  interest  has been  focused on  the dynamics  of  

e v o l u t i o n  to a final state, tS-t~ E x a m p l e s  of  expe r imen ta l  systems in which 

such instabi l i t ies  appea r  are  d i rec t iona l  sol id i f ica t ion of  b inary  al loys,  ~-3~ 
v iscous  f inger ing in H e l e - S h a w  cells, ca) and flames, t3~ In  a typical  s i tua t ion  

an interface sepa ra t ing  two different phases,  wi th  an init ial  fiat o r  c i rcular  
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shape, becomes unstable. The interfacial instability could be induced by the 
presence of gradients of pressure, temperature, concentration, etc., between 
bulk and interface and it could be described as a bulk-driven instability. 
Then, the interface grows against the efforts of a restoring force, such as 
surface tension. The linear regime is described by the usual Mullins- 
Sekerka I~11 and Saffman-Taylor t~21 instabilities. After the linear regime, 
structures like fingers or dendrites are generated. In general, these types of 
instabilities are highly nonlinear and nonlocal and are described by macro- 
scopic models which contain the nonlinear effects by means of boundary 
conditions. 

Driven diffusive systems (DDS)  ~13-17) are useful prototype models to 
study nonequilibrium interfacial instabilities and pattern formation/18-24) 
In these models an external field is responsible for the instabilities and the 
nonequilibrium evolution to a final state is associated with the use of open 
boundary conditions. In Refs. 20 and 23, starting from a macroscopic 
model, two different types of linear instabilities have been studied. The 
first ~2~ is the Mullins-Sekerka-type instability. In DDS, the imbalance 
of fluxes responsible for the instability is generated by the external field. 
The second t23~ is the so-called surface-driven instability. In contrast to 
the MuUins-Sekerka instability, which is bulk driven, the surface-driven 
instability is localized to the vicinity of the interface between the two 
coexisting phases and depends essentially on the orientation of the external 
field with respect to these phases. 

An interesting aspect of the driven diffusive systems is that they could 
be described at a mesoscopic level by means of a relatively simple field 
model. This is a conserved time-dependent Ginzburg-Landau-like model, 
which contains a new flux term that takes into account the presence of the 
external field. In this sense, this model is a generalization of model B of 
critical ~25) and phase separation ~26~ dynamics. In order to describe the 
evolution to a nonequilibrium state, open boundary conditions are used. In 
this paper we study the evolution of patterns from the short-time regime to 
the final state and the dependence of pattern formation on the boundary 
conditions. In Section 2, we present the model. In Section 3, we discuss 
the results of our numerical integrations. We use different types of open 
boundary conditions, such a~ periodic, antiperiodic, and fixed. For periodic 
boundary conditions, the two interfaces associated with a strip perpen- 
dicular to the external field become unstable. A characteristic concentration 
profile is generated with a kink-antikink structure in the direction of the 
external field. We also study these two interfaces separately by considering 
an isolated interface in the presence of antiperiodic and fixed boundary 
conditions. In this way, we reproduce the kink and antikink concentration 
profile of each interface, respectively. Then, from our numerical results, 
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we determine the linear dispersion relation associated with each interface. 
During the intermediate regime, we observe the growth of fingers. In 
particular, fingers with a highly characteristic shape are formed at the 
unstable interfaces with a kink concentration profile. Depending on the 
boundary conditions, the final state corresponds to strips (periodic bound- 
ary conditions), multifinger states, or a one-finger state (antiperiodic 
and fixed boundary conditions). In Section 3, we present an analytical 
analysis. We discuss the results for the initial growth of the different inter- 
faces in terms of surface-driven c231 and Mullins-Sekerka ~2~ instabilities. 
The linear evolution of interfaces with kink concentration profile could be 
explained in terms of a surface-driven instability. Furthermore, the presence 
of antikink concentration profiles gives rise to a bulk instability of the 
Mullins-Sekerka type. For the long-time limit, we concentrate on the 
characterization of the one-finger state with triangular shape. We relate the 
tip width with the length introduced by the external field. A summary of 
conclusions is presented in Section 4. 

2. THE FIELD M O D E L  

The model is described by the following equation for the concentration 
variable: 

O__~.~ = V2 6,X, p _ V .  (E 'o- (?) )  (2.1)  
Or 6? 

where ~ is the Ginzburg-Landau free energy: 

oaf= Idr (_2?  2 u 2 +~?'+~IV?I 2) (2.2) 

For a zero value of the external field E', we have the usual time- 
dependent Ginzburg-Landau equation for a conserved order parameter. 
The second term of the right-hand side of Eq. (2.1) contains the contribu- 
tion to the total flux induced by E' acting on charged particles and 
tr(?)= l - a ?  2 is the conductivity. For simplicity, in Eq. (2.1) we take a 
symmetric coupling between the conductivity and the concentration values. 
This coupling takes into account the decrease in the flux induced by E' by 
reducing temperature. The parameter a depends on temperature, and a = 1 
for T =  0 and decreases by increasing T. 

Equations (2.1)-(2.2) can be written in dimensionless form by 

0c 
~ = V 2 ( - c  + c 3 -V2c) +V. (Ec 2) (2.3) 
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where there is now only one parameter E. We consider E in the direction 
of the positive y coordinate. A stationary solution of Eq. (2.3) for a fiat 
interface in two dimensions, with a nonzero constant flux J = J~ imposed 
at the boundaries, is given by 12~ 

where c• and ~• are 

c + ( y ) =  + c •  Y _'] 
- - \ r  ~ / 2 ]  

(2.4) 

(4) c + =  1+_ E 

1 

C_+ 

Eq. (2.4) gives the standard kink solutions c_+(y)lE=o = -I-Co(y), which 
describe the coexistence of two phases (rich and poor) with bulk concentra- 
tion values e+ = c = Co = 1 and interference width ~ + = ~_ = 1 centered at 
y = 0 .  For a nonzero E, the two different solutions c+(y) and c ( y )  have 
different bulk concentration values, Eq.(2.5), and interracial widths, 
Eq. (2.6), depending on the orientation of E respect to the two phases. 

(2.5) 

(2.6) 

= (1 -acZ~ )E'  are the fluxes at the boundaries and E =  IEI. For zero E, 

3. N U M E R I C A L  R E S U L T S  

We have considered a discretization of Eq. (2.3) in a WxL, 
rectangular lattice of different sizes. W is the size of the lattice in the x 
direction. E points to the positive y direction. We have used the Euler 
method with a mesh size A x =  [1.0, 1.5] and time interval At = [0.01, 0.2]. 

First, we consider periodic boundary conditions in both directions and 
we start with a strip perpendicular to the external field. As initial perturba- 
tion of the flat interfaces, we introduce a superposition of modes with 
random weights. In Fig. 1 we present a typical interfacial evolution for this 
case. Positive and negative values of the concentration correspond to black 
and white regions, respectively. The two interfaces of the strip are unstable 
and they develop structures during the process. For intermediate times, 
(Figs. lb and lc), fingers are formed and grow. In particular, we obtain a 
very characteristic triangular shape of the fingers for one of the interfaces. 
In the long-time regime, we obtain a pattern with two strips parallel to E 
(Fig. Id). One expects, based on energetic reasons, that the final pattern 
would correspond to only one strip. However, this appears to be a very 
slow process in the absence of fluctuations. 
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In Fig. 2, we present the shape of the concentration profile developed 
in the initial stage of the temporal evolution described by Fig. 1. The 
matching of two kinks with different bulk concentration values gives as a 
result a kink-ant ikink profile. The kink could essentially be described 
by the c ( y )  solution of Eqs. (2.4)-(2.6). Furthermore,  the antikink profile 
presents a maximum concentration value slightly smaller than c+ which 
rapidly decreases to c_ .  

In the following, we treat the two interfaces of Fig. 1 separately. In this 
way, two different aspects could be studied. First, we are able to obtain 
numerically the dispersion relation characterizing the initial evolution of 
each interface separately and to compare them with the available 
theories. ~2~ Second, we obtain different behaviors of the interfaces in the 

(a) (b) 

Fig. 1. Temporal evolution of interfaces with periodic b.c. and W=75, L= 150, E=0.3. 
(a) t = 500; (b) t = 2000; (c) t = 4000; (d) t = 20,000. 

822/74/1-2-10 
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(c) (d) 
Fig. 1 (continued) 

long-time regime due to the use of different types of boundary conditions. 
For each isolated interface, we reproduce the concentration profile of 
Fig. 2. The kink and antikink profiles in the right and left side of Fig. 2 are 
obtained by considering antiperiodic and fixed boundary conditions, 
respectively. For these boundary conditions multifinger and also one-finger 
patterns are obtained as final states. 

3.1. Short -T ime Behavior 

For antiperiodic b.c., one imposes that the values of the concentration 
at the boundaries are equal and of opposite sign. Then, starting from the 
kink solution profile corresponding to E = 0 ,  the concentration values, 
which depend on the external field, readjust rapidly to the kink profile 
given by Eq. (2.4) with E ~ 0 .  In this case, we observe that the interface is 
either unstable or stable depending on the orientation of the external field 
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Fig. 2. Initial concentration profiles. Dotted line: periodic b.c. Continuous line on the left 
side of the central vertical line: fixed b.c. E points to the positive y direction. 
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Fig. 3. Numerical results of Eq. (2.3) for the linear dispersion relation. +:  antiperiodic b.c. 
O: fixed b.c. 
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with respect to the two coexisting phases, c23~ In particular,  c+(y) and 
c_(y) are stable and unstable, respectively. For  an unstable interface, the 
external field points from the rich (black) to the poor  (white) phases, as in 
the case of the kink profile in Fig. 2 (that is, the interface at the top of 
Fig. 1). 

For  fixed boundary  conditions, the Values of the concentrat ion at the 
boundaries are fixed. In this case, depending on whether the concentrat ion 
at the boundary  is smaller or larger than the max imum concentrat ion 
value, the interface is unstable or stable, t2~ respectively. Following this 
argument,  the antikink profile in Fig. 2 is unstable (that is, the interface at 
the bo t tom of Fig. 1).2 

To  give a quanti tat ive characterization of the initial temporal  evolu- 
tion, we present the numerical results obtained for the linear dispersion for 
both  antiperiodic and fixed boundary  conditions in Fig. 3. For  a small 
per turbat ion of the planar  interface, y(t)=A exp(w(k) . t ) ,  we obtain in 
both cases that  w(k)~ k 2 in the region of small k. For  very small values 
of k, numerical errors are more  impor tant  due to the very small values 
of w(k). In the following section we give a theoretical interpretat ion of the 
results presented. 

3.2. Long-T ime  Behavior  

We have performed numerical integrations in the long-time regime for 
the unstable isolated interface in the presence of antiperiodic (Figs. 4a and 
4b) and fixed (Fig. 4c) boundary conditions. The characteristic triangular- 
shaped fingers observed in Fig. 1 for periodic boundary conditions are also 
developed during the intermediate temporal regime for antiperiodic bound- 
ary conditions. In this case, we observe a very rapid competition between 
fingers. For lattices in which the rate L/W is not large, a multifinger state 
is obtained, as in Fig. 4a. For large L/W, the competition between fingers 
proceeds until only one finger is left, as in Fig. 4b. In Figs. 5a and 5b we 
present the evolution of only one finger with two different tip widths. We 
find that the final tip width is independent of the initial width and appears 
to depend only on the value of the external field. 

For fixed boundary conditions, the unstable interface also develops 
fingers, but in this case they have not a triangular shape, but the ones that 

2 For the interface with the antikink profile, in the initial stages a relaxation of the initial 
perturbations is obtained/TM However, after this transient the interface becomes unstable 
with a perturbation of smaller wavevector k. 



(a )  

(c) (b) 
Fig. 4. Long-time evolution of interfaces with (a) multifinger state with antiperiodic b.c., 
W=40, L=70,  E=0.5, and t =  10,000. (b) One-finger state with antiperiodic boundary 
conditions, W=40, L =  140, E=0.5, and t =  10,000. (c) One-finger state with fixed b.c., 
W=35, L=75,  E=0.3, and t=lSO0. 
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(a)  

Fig. 5. 

(b) 

One-finger state with antiperiodir b.c. and different initial tip width ~. for E=0.3  
(a) ~-> ~,ip. (b) ~ < J.,ip. In both cases the final tip width is ~-,ip. 
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correspond to the antikink concentration profile in Fig. 1. In this case, we 
observe that the competition between fingers is very slow compared with 
the previous case. In Fig. 4c we present a pattern in which the interface 
evolves to only one finger. In this case, E points to the negative y direction. 

4. T H E O R E T I C A L  A N A L Y S I S  

4.1.  S h o r t - T i m e  B e h a v i o r  

In this subsection we explain the numerical results for the initial 
temporal regime in terms of surface-driven (23) and Mullins-Sekerka 
instabilities. (2~ In ref. 23 we have presented an analytical description of the 
surface-driven instability in terms of a macroscopic model. This model 
could be derived from the mesoscopic model, Eq. (2.3). (24) Apart from the 
dynamic equation for the temporal evolution of the concentration in the 
bulk 

a, 6c= -V . j+  = DV z 6c+_ QE.V &c (4.1) 

where 6c = c(r, t ) -  c+, the diffusion coefficient D = 3c2+ - 1, and Q = 2c+. 
The boundary equations are 

~r  F,~-4- ~ E .  ( ~ -  ~) (4.2) 

V=~c c [ ( j + - j _ ) . f i ] , +  affE.f i  (4.3) 

where u=u6 ,  is the normal coordinate with respect to the interface, 
and fi is the unitary vector that points to the rich phase, J{  = - V - f i  is 
the local curvature, zlc=2c+ is the concentration gap, F=y/Ddc is 
proportional to the surface tension 

~o~ (dco(u)~2 2x/~ 
Y= - o ~ d u \  du J = 3 

and 

fl= f~-o~ du[a(c~176 2 x/~ 

The subscript I means the limiting values as the interface is approached 
from the bulk phases. 
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The second term of the right-hand side of Eq. (4.1) contains the flux 
term induced by the external field. Equation (4.2) is the Gibbs-Thomson 
relation, and is also affected by the presence of E. The new term accounts 
for the correction of the concentration values in c(u), c+ of Eqs. (2.4) and 
(2.5) because the interface is locally tilted with respect to the field direction. 
However, in the linear approximation, the contribution of this term is 
negligible for ]E. fil ~,E. The most important contribution regarding the 
destabilization effects is given by the new contribution, the second term 
of the right-hand side, of the continuity equation (4.3). This new term 
contains the contribution of a flux along the interface by the external field. 
It arises from the variation of the tangential current, which depends on the 
orientation of the interface with respect to the external field. In this sense, 
we talk about a surface-driven instability and the results do not depend on 
the type of boundary conditions. The sign of this contribution depends 
only on the product E .  il. For example, it gives a destabilizing contribution 
to interfaces with the same orientation as that on the right side of 
Fig. 2 and a stabilizing contribution for the opposite direction. These 
results are in agreement with our numerical results for the isolated interface 
with antiperiodic boundary conditions. For large values of E, this term 
dominates, the interface decouples from the bulk, and we can talk about a 
local model. 

The linear dispersion relation for a small perturbation of the planar 
interface can be obtained from Eqs. (4.1)-(4.3), ~ 

Fk 2 otEk 2 
w ( k ) -  Ac { - E Q + [ ( E Q ) 2 + ( Z D k ) 2 ] ' / 2 } +  ,6----~ (4.4) 

where ct = fl - 2QF. 
The destabilizing effect in Eq. (4.4) comes from the last term. From 

Eq. (4.4) we find that the small-k limit gives a w ( k ) ~ k  2 behavior in 
accordance with the numerical results for the dispersion relation of Fig. 3. 

Furthermore, the Mullins-Sekerka-type instability of ref. 20 could 
explain the results for the antikink-profile interfaces of Fig. 1 or, equiv- 
alently, for the result obtained for fixed boundary conditions. In this case, 
the characteristic ramp profile responsible for the instability is induced by 
the external field. Apart from the bulk equation, Eq. (4.1), we have the 
corresponding boundary equation together with Eq. (4.3). 

/3 Jo 
6cl,= FoU _+ ~ E .  (fi - , ~ ) - ~ .  y (4.5) 

where Jo(E)/D accounts for the slope of the ramp. The term proportional 
to E is associated with the surface-driven instability and gives a stabilizing 



Interfacial Growth in Driven GL Models 143 

contribution due to the orientation of the field with respect to the antikink 
interface of Fig. 1. 

From these equations, the dispersion relation is 

( Jo Fk2.~ (4.6) w(k)= 2 /~Jc  Ac ) { +EQ+[(EQ)2 +(2Dk)2]~/2} ctEk2,dc 

In this case, the destabilizing term is the one proportional to Jo. We also 
obtain a k 2 behavior in the small-k limit in agreement with the results of 
the numerical integration (Fig. 3). For very small values of E, the ramp 
profile is also very small and only very larger wavelength modes are 
unstable (see preceding footnote). 

4.2. Long-T ime  Regime 

In this subsection we present theoretical arguments in order to charac- 
terize the shape of the triangular finger at the long-time limit. One of the 
essential ingredients of this analysis is related to the tip width of the fingers. 
As we conclude from Fig.5, the tip width depends on the value of E and 
different initial widths evolve to the same final one. Furthermore, we obtain 
a smaller tip width by increasing E. Apart from L and W, there is another 
length introduced by the external field E. The external field has dimensions 
of the inverse of a length. The size of the tip of the finger is simple related 
to this length. In fact, we observe that the tip width in the long-time regime 
is not very different from that of the fingers in the linear regime. Then, 
following this argument, the tip width of the fingers can be calculated 
approximately from the linear dispersion relation. In this way, the tip width 
at initial stages is 

2n 
2max = - -  (4.7) 

kmax 

where kma x is the fastest mode of the dispersion relation calculated from 
Eq. (4.4). In particular, we find that k~nax oc E. For larger E we obtain a 
shift to larger values of kma x and then smaller tips for the fingers, in accord- 
ance with the numerical simulations. Therefore, the initial number of 
fingers N is 

W 
N ~ - -  (4.8) 

).max 

At long times, the tip width )-tip is approximately ) . t ip ~ ).max" In Fig. 6 we 
present the results for ). . . . .  determined from Eq. (4.4), and ).tip versus E. 
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Fig. 6. Comparison between 2t~ p and 2ma~ versus E. The continuous line has been obtained 
by calculating the maximum of w(k) from Eq. (4.4). The dots are the numerical results for 2t~ p 
calculated as explained in the text. 

To calculate 2tip we have used the long-time patterns obtained from our 
numerical simulations and we have considered that the tip ends at the 
points where the second derivative of the interfacial curve is zero. We 
obtain that our prediction about the dependence of 2ti p 0s lIE is essentially 
correct, but there is a constant positive shift between the values of 2max 
and ).tip- This could be associated in part with the criterion chosen to deter- 
mine ).tip, which overestimates the tip width. Furthermore, it could also be 
attributed in part to the highly nonlinear effects present in the long-time 
limit that do not affect )'max" 

Furthermore, we observe that the angle 0 between the lateral finger 
interface and the x direction is not fixed, but depends on the tip width and 
on the number of fingers at each time. For large values of L/W and in the 
long-time limit for which only one finger remains after the disappearance 
of all the rest, the shape of the one finger could be determined in terms of 
L, IV, and )'tip by the following expression: 

0 = arctan k. W -  ).tip/] (4.9) 

5. S U M M A R Y  

We have studied numerically the short- and long-time regime of 
the evolution of interfaces in driven diffusive systems with periodic, 
antiperiodic, and fixed boundary conditions. For periodic boundary condi- 
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tions, we observe that both interfaces of an initial strip perpendicular to 
the external field become unstable. During the intermediate temporal 
regime, fingers are developed. In particular, fingers with a triangular shape 
are developed for one of the interfaces. Different interfacial instability 
mechanisms are associated with each interface. We have studied numeri- 
cally the linear dispersion relation of both interfaces by considering each 
one independently, in the presence of antiperiodic and fixed boundary con- 
ditions. A theoretically predicted surface-driven instability seems to be the 
responsible for the instability giving rise to triangular-shaped fingers. The 
other interface has a characteristic ramp profile and the instability could be 
explained in terms of a Mullins-Sekerka-type mechanism. For the long- 
time regime we obtain strips in the periodic boundary condition case. For 
antiperiodic and fixed boundary conditions the multifinger state and one- 
finger state could be obtained. For antiperiodic boundary conditions we 
have studied the long-time evolution of only one triangular finger. We give 
an explanation of the triangular shape in terms of the length associated 
with the external field. 
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